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Abstract

We present a new S-matrix, a solution of the braid relation and obtain a unitary
solution R̆(θ, φ) of the Yang–Baxter equation (YBE) via Yang-Baxterization
acting on the solution. We show that arbitrary two-qubit entangled states can be
achieved by relating the unitary matrix R̆(θ, φ) to entanglement. An oscillator
Hamiltonian can be constructed from the R̆(θ, φ) matrix. The Berry phase of
the Yang–Baxter system is investigated.

PACS numbers: 03.67.Mn, 02.40.−k, 03.65.Vf

1. Introduction

Entanglement is a bizarre feature of quantum theory, and has been recognized as an
important resource for applications in quantum information and computation processing [1–4].
Leveraging the entanglement and using quantum coherence, certain problems may be solved
faster by a quantum computer than a classical one. The Berry phase plays an interesting
role in quantum computation. Quantum-gate operations can be implemented through the
geometric effects on the wavefunction of the systems; this is the so-called geometric quantum
computation [5]. Geometric phases depend only on global geometric features, not on the details
of evolution, such as the driving Hamiltonian, the initial and final states of the evolution [6].
Thus the geometric quantum computation is insensitive to local inaccuracies and fluctuations,
which are the main resources of decoherence. Investigations on the geometric phase may
produce a novel framework for quantum information science. It is shown that the geometric
phase can be exploited as a tool to detect regions of criticality without having to undergo a
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quantum phase transition [7, 8]. In [9], Dajka et al found that the geometric phase can detect
possible anisotropy of dephasing.

Recently, braiding operators and the Yang–Baxter equation (YBE) [10–12] have been
introduced to the field of quantum information and quantum computation [13, 15–22]. Kitaev
[13] investigated topological quantum computation (TQC) by anyons based on quantum braids.
TQC [15] is one of the important approaches to achieve a fault-tolerant quantum computer.
The computation scheme utilizes the topological states of non-Abelian anyons, or the particles
obey non-Abelian braiding statistics. Quantum information is stored in the states with multiple
quasiparticles with topological degeneracy. Quantum-gate operations are implemented by
braiding the particles. Decoherence can be mitigated since unitary transformations associated
with braiding particles are insensitive to the dynamics of the particles. On the other hand,
Kauffman and Lomonaco [16] have explored the role of unitary braiding operators in quantum
computation. It is shown that the braid matrix can be identified as the universal quantum gate
[16–18]. This motivates a novel way to study quantum entanglement and the Berry phase
based on the theory of braiding operators, as well as YBE. The first step along this direction
is initiated by Zhang et al [18]. In [18], the Bell matrix generating two-qubit entangled states
has been recognized to be a unitary braid transformation. Later on, an approach to describe
Greenberger–Horne–Zeilinger (GHZ) states or N-qubit entangled states based on the theory
of unitary braid representations has been presented in [19]. Chen and his co-workers [20, 21]
used unitary braiding operators to realize entanglement swapping and generate the GHZ states,
as well as the linear cluster states. With the unitary R̆(θ, φ) matrix, the authors constructed
a Hamiltonian, and explored the Berry phase and quantum criticality of the Yang–Baxter
system. In a very recent work [22], it has been found that any pure two-qubit entangled state
can be achieved by a universal Yang–Baxter matrix.

In this paper, we present an S-matrix which is a solution of the braid relation. The
S-matrix is found to be locally equivalent to the double control NOT (DCNOT) gate. By
using Yang-Baxterization, we derive a unitary matrix R̆(θ, φ). Then we show that arbitrary
two-qubit entangled states can be generated by the unitary matrix R̆(θ, φ). In section 3, we
construct a Hamiltonian from the unitary matrix R̆(θ, φ). The Berry phase of the system is
investigated. The Hamiltonian system is shown to be equivalent to an oscillator system of two
fermions with frequency ω cos θ . We end with a summary.

2. An S-matrix, Yang-Baxterization and entanglement

We first briefly review the theory of braid groups, the YBE and Yang-Baxterization approach.
Let Bn denotes the braid group on n strands. Bn is generated by elementary braids
{b1, b2, . . . , bn−1} with the braid relations,{

bibi+1bi = bi+1bibi+1 1 � i < n − 2

bibj = bjbi |i − j | � 2,
(1)

where the notation bi ≡ bi,i+1 is used, bi,i+1 represents 11 ⊗ 12 ⊗ 13 · · · ⊗ Si,i+1 ⊗ · · · ⊗ 1n,
and 1j is the unit matrix of the j th particle. The elementary braid bi represents the ith string
crossing over the (i+1)th string, and its inverse b−1

i represents the (i+1)th string crossing over
the ith string. The product of two braids bibj is accomplished by adjoining the top strand of
bi to the bottom strand of bj .

As is known, a unitary solution of YBE can be found via Yang-Baxterization acting on
the solution of the braid relation. For example, if bi has two eigenvalues, then the Yang-
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Baxterization of the unitary braiding operator bi is

R̆i(x) = 1√
1 + x2

(
bi + xb−1

i

)
, (2)

where R̆i is short for R̆i,i+1. The unitary R̆-matrix satisfies the YBE which is of the form

R̆i(x)R̆i+1(xy)R̆i(y) = R̆i+1(y)R̆i(xy)R̆i+1(x), (3)

where multiplicative parameters x and y are known as the spectral parameters. The asymptotic
behavior of R̆(x) is x-independent, that is limx→∞R̆i(x) = b−1

i . Generally, multi-spin
interaction Hamiltonians can be constructed based on the YBE. As R̆ is unitary, it can define
the evolution of a state |�(0)〉:

|�(t)〉 = R̆i(t)|�(0)〉, (4)

where R̆i(t) is time dependent, which can be realized by specifying a corresponding time-
dependent parameter of R̆i . By taking partial derivative of the state |�(t)〉 with respect to
time t, we have an equation,

ih̄
∂|�(t)〉

∂t
= ih̄

[
∂R̆i(t)

∂t
R̆

†
i (t)

]
R̆i(t)|�(0)〉

= H(t)|�(t)〉, (5)

where H(t) = ih̄ ∂|R̆i (t)〉
∂t

R̆
†
i (t) is the Hamiltonian governing the evolution of the state |�(t)〉.

Thus, the Hamiltonian H(t) for the Yang–Baxter system is derived through the Yang-
Baxterization approach.

In the following, we present a solution of the braid relation. Generally, the standard
eight-vertex model is a generalization of the ‘ice model’. In this model, each vertex can
be represented by a matrix element which is explained as the Boltzmann weight. In [18],
the authors gave up the nonnegativity condition for the Boltzmann weight, and obtained
some useful quantum gates which satisfy the YBE. Motivated by this, we give up the
nonnegative condition and alter the location of the matrix elements of the model. It is
hoped that this may give some interesting results. The S-matrix takes the following form:

S =

⎛
⎜⎜⎝

0 a1 a2 0
a3 0 0 a4

a5 0 0 a6

0 a7 a8 0

⎞
⎟⎟⎠ , (6)

where ai (i = 1, . . . , 8) are the parameters to be determined. Setting a1a3 = a2a5 = a4a7 =
a6a8 = 1

2 , we have a1 = a4 and a2 = a6. From the relation S2 = 1, it is obtained that
a2

1 = −a2
2 . In the case of a1 = −ia2 = 1√

2
eiφ , a new S-matrix is found to be of the form

S = 1√
2

⎛
⎜⎜⎝

0 eiφ i eiφ 0
e−iφ 0 0 eiφ

−i e−iφ 0 0 i eiφ

0 e−iφ −i e−iφ 0

⎞
⎟⎟⎠ , (7)

where the parameter φ is real. One can verify that S2 = I and S†S = SS† = I , thus the
S-matrix is unitary. For ith and (i + 1)th lattices, S can be expressed in terms of spin operators,

S = 1√
2

eiφ

[
1 + i

2

(
S+

i + S+
i+1

)
+ (1 − i)

(
S3

i S
+
i+1 − S+

i S3
i+1

)]

+
1√
2

e−iφ

[
1 − i

2

(
S−

i + S−
i+1

)
+ (1 + i)

(
S3

i S
−
i+1 − S−

i S3
i+1

)]
,

(8)
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where S+
i = S1

i + iS2
i and S−

i = S1
i − iS2

i are the raising and lowering operators of spin-1/2
angular momentum for the ith particle, respectively. The braid relation (1) and S2 = I are
similar to those for the usual permutation operator Pi,i+1 = 1

2 (1 + �σi · �σi+1), where �σ denotes
Pauli matrices. Since the permutation operators P and S do not have the same eigenvalues,
one cannot transfer from one to another by unitary transformations. So one can say that S is
a new braiding matrix. Unitary braid matrix can be construed as a quantum gate [16]. The
S-matrix is calculated to be locally equivalent to the DCNOT gate in the following way:

DCNOT =

⎛
⎜⎜⎝

1 0 0 0
0 0 0 1
0 1 0 0
0 0 1 0

⎞
⎟⎟⎠ = (A ⊗ B) · S · (C ⊗ D), (9)

where

A = 1√
2

(
1 e−i π

4

i e−i 3π
4

)
, B = 1√

2

(
i e−i π

4

1 −e−i 3π
4

)
,

C = 1√
2

(−ei π
4 ei π

4

1 1

)
, D =

(−1 0

0 −ei 3π
4

)
.

(10)

We next derive a unitary matrix R̆ from S by the Yang-Baxterization approach. As follows,
we write the YBE in the form of additive spectral parameters u and ν :

R̆i(u)R̆i+1(u + ν)R̆i(ν) = R̆i+1(ν)R̆i(u + ν)R̆i+1(u). (11)

The asymptotic behavior of R̆(u) is u-independent, that is limu→∞R̆i(u) = bi . From a given
solution of the braid relation S, a unitary matrix R̆(u) can be constructed by using the approach
of Yang-Baxterization. It is easy to show that R̆(u) = ρ(u)(I + iuS) is a rational solution of
YBE (u is real), where ρ(u) is a normalization factor. One can choose appropriate ρ(u) to
ensure that R̆(u) is unitary. According to the inverse scattering method, R̆−1(u) is proportional
to R̆(−u). For the purpose of finding a unitary matrix R̆(u), R̆†(u) should be equal to the
inverse matrix of R̆(u) or R̆−1(u). As a result, we obtain the unitary R̆(u) matrix written
in terms of the S-matrix, R̆(u) = 1√

1+u2
(I + iuS). By introducing a new variable θ with

cos θ = u√
1+u2

and sin θ = 1√
1+u2

, the matrix R̆(u) can be rewritten as

R̆(θ, φ) = sin θI + i cos θS. (12)

There are two parameters θ and φ in the unitary R̆(θ, φ) matrix. We now show that an arbitrary
two-qubit entangled state is achievable based on the unitary matrix R̆(θ, φ). When R̆(θ, φ)

acts on the direct product states |kl〉 ≡ |k〉i ⊗ |l〉i+1(k, l = 0, 1), the R̆(θ, φ) matrix transfers
the two-qubit product states to entangled states,

|00〉 → sin θ |00〉 +
i√
2

cos θ e−iφ |01〉 +
1√
2

cos θ e−iφ |10〉,

|01〉 → i√
2

cos θ eiφ|00〉 + sin θ |01〉 +
i√
2

cos θ e−iφ|11〉,

|10〉 → − 1√
2

cos θ eiφ|00〉 + sin θ |10〉 +
1√
2

cos θ e−iφ |11〉,

|11〉 → i√
2

cos θ eiφ|01〉 − 1√
2

cos θ eiφ|10〉 + sin θ |11〉.

(13)

Let us find the entanglement degree of the above states by using concurrence [23]. The
concurrence is defined as

C(ρ) = max{0, λ1 − λ2 − λ3 − λ4},
4
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where λi are the eigenvalues of R =√√
ρρ̃

√
ρ taken in decreasing order, ρ̃ = σy⊗σyρ

∗σy⊗σy

with ρ∗ being the complex conjugate of ρ, and σy is the Pauli spin matrix. For a pure two-qubit
state, |ψ〉 = a|00〉 + b|01〉 + c|10〉 + d|11〉, the concurrence can be found to be

C(ψ) = 2|ad − bc|. (14)

It is not difficult to obtain the entanglement degree of the four entangled states (13) as follows:

C(1) = C(2) = C(3) = C(4) = cos2 θ, (15)

where C(i)(i = 1, 2, 3, 4) denote the ith state’s concurrence. It is worth noting that the four
states in the right-hand side of equation (13) possess the same entanglement degree which
depends on the parameter θ . When u increases from minus infinity to plus infinity, θ varies
from π to 0 correspondingly. As u goes to infinity, the R̆(θ, φ) matrix reduces to iS, and
the four states’ entanglement reaches the maximum value of 1. If θ takes other values,
the states possess continuous entanglement degree determined by θ . So one can say that the
unitary S-matrix describes the maximum entangled states, and the Yang–Baxter matrix R̆(θ, φ)

generates entangle states with arbitrary degree of entanglement. When θ = 0/π , maximally
entangled states can be achieved. It is possible to find an explicit form of the solution of the
YBE to generate the maximally entangled states. By choosing θ = 0 and φ = 0, we have

R̆ = 1√
2

⎛
⎜⎜⎝

0 i −1 0
i 0 0 i
1 0 0 −1
0 i 1 0

⎞
⎟⎟⎠ . (16)

The action of the R̆-matrix results in the two-qubit maximally entangled states.
It is worth mentioning that the concurrences C(i) do not depend on the parameter φ. This

tells us that the effect of φ can be reduced by local unitary operation U. That is

(U ⊗ U)S(U−1 ⊗ U−1) = 1√
2

⎛
⎜⎜⎝

0 1 i 0
1 0 0 1
−i 0 0 i
0 1 −i 0

⎞
⎟⎟⎠ , (17)

where U = (e− iφ
2 0

0 e
iφ
2

)
, and hence we have φ-independent R̆(θ) as follows:

R̆(θ) = 1√
2

⎛
⎜⎜⎜⎝

√
2 sin θ i cos θ −cos θ 0

i cos θ
√

2 sin θ 0 i cos θ

cos θ 0
√

2 sin θ −cos θ

0 i cos θ cos θ
√

2 sin θ

⎞
⎟⎟⎟⎠ . (18)

3. Hamiltonian and Berry phase

A Hamiltonian of the Yang–Baxter system can be constructed from the R̆(θ, φ) matrix. As
shown in [20], the Hamiltonian is obtained through the Schrödinger evolution of the entangled
states. Let the parameter φ be time dependent as φ = ωt and θ be time independent, the
Hamiltonian is

Ĥ = i h̄
dR̆(θ, φ)

dt
R̆†(θ, φ)

= i h̄ cos θ
∂S

∂t
(i sin θI + cos θS). (19)

5
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In terms of the standard basis of (|00〉, |01〉, |10〉, |11〉), the Hamiltonian is of the following
form:

Ĥ = h̄φ̇ cos θ

⎛
⎜⎜⎜⎜⎜⎝

− cos θ − i√
2

sin θ eiφ 1√
2

sin θ eiφ 0
i√
2

sin θ e−iφ 0 i cos θ − i√
2

sin θ eiφ

1√
2

sin θ e−iφ −i cos θ 0 1√
2

sin θ eiφ

0 i√
2

sin θ e−iφ 1√
2

sin θ e−iφ cos θ

⎞
⎟⎟⎟⎟⎟⎠ . (20)

The eigenstates of the Yang–Baxter system are found to be

|ψ1〉 = sin
θ

2
eiφ|00〉 + i

√
2

2
cos

θ

2
|01〉 +

√
2

2
cos

θ

2
|10〉

|ψ2〉 = −i

√
2

2
sin

θ

2
eiφ|01〉 +

√
2

2
sin

θ

2
eiφ|10〉 + cos

θ

2
|11〉

|ψ3〉 = −cos
θ

2
|00〉 + i

√
2

2
sin

θ

2
e−iφ|01〉 +

√
2

2
sin

θ

2
e−iφ|10〉

|ψ4〉 = i

√
2

2
cos

θ

2
|01〉 −

√
2

2
cos

θ

2
|10〉 + sin

θ

2
e−iφ|11〉

(21)

with the corresponding eigenvalues E1 = E2 = h̄ω cos θ, E3 = E4 = −h̄ω cos θ . According
to the definition of the Berry phase [6], when the parameter φ evolves adiabatically from 0 to
2π , the Berry phase accumulated by the states |ψi〉(i = 1, 2, 3, 4) is

γi = i
∫ 2π

0
〈ψi | d

dφ
|ψi〉 dφ. (22)

Using equations (21) and (22), we obtain the Berry phases for the entangled states |ψi〉:⎧⎪⎨
⎪⎩

γ1 = γ2 = −π(1 − cos θ) = −�

2

γ3 = γ4 = π(1 − cos θ) = �

2
,

(23)

where � = 2π(1 − cos θ) is the solid angle enclosed by the loop on the Bloch sphere.
Introducing three operators

S+ = 1√
2

[
i − 1

2

(
S+

i + S+
i+1

)
+ (1 + i)

(
S3

i S
+
i+1 − S+

i S3
i+1

)]
,

S− = 1√
2

[−1 − i

2

(
S−

i + S−
i+1

)
+ (1 − i)

(
S3

i S
−
i+1 − S−

i S3
i+1

)]
,

S3 = 1

2

[(
S3

i + S3
i+1

) − i
(
S+

i S−
i+1 − S−

i S+
i+1

)]
,

(24)

it is not difficult to find that (S±)2 = 0 and (S3)2 = 1
4 . We have a SU(2) group formed by the

three operators, fulfilling conditions [S+, S−] = 2S3 and [S3, S±] = ±S±. The Hamiltonian
(20) can be rewritten based on the operators (24) as follows:

Ĥ = −h̄ω cos θ(2 cos θS3 + sin θ eiφS+ + sin θ e−iφS−)

= −h̄ω cos θĤ 0, (25)

where Ĥ 0 is of the form

Ĥ 0 = 2 cos θS3 + sin θ eiφS+ + sin θ e−iφS−.

6
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Thus, the Hamiltonian Ĥ constructed from the matrix R̆(θ, φ), or the S-matrix has the same
physical meaning as that given in [21]. That is, Ĥ is an oscillator Hamiltonian of two
fermions with frequency ω cos θ . For the Yang–Baxter system, θ = 0 is a critical point.
In other words, the Hamiltonian represents a standard oscillator when θ = 0, and when
θ �= 0 the wavefunction of the system is described by the spin-coherent state [24]. The
quantum criticality can be captured by the Berry phase of the system since the Berry phase
±π(1 − cos θ) = 0 at the critical point θ = 0. Our result is consistence with that given
in [21].

4. Summary

In this paper, we have presented a new braiding operator S and derived a unitary R̆(θ, φ) matrix
via Yang-Baxterization of the new S-matrix. The S-matrix is found to be locally equivalent to
the DCNOT gate. We show that any pure two-qubit entangled states can be achieved when
the unitary R̆(θ, φ) matrix acts on the direct product states. Specifically, the braiding operator
S describes the maximally entangled states, or the Bell states, while the Yang–Baxter matrix
R̆(θ, φ) generates entangled states with arbitrary degree of entanglement. The evolution of
the Yang–Baxter system is explored by constructing a Hamiltonian from the unitary R̆(θ, φ)

matrix, and the Hamiltonian is shown to describe an oscillator of two fermions with frequency
ω cos θ . We study the Berry phase of the Yang–Baxter system and find that the Berry phase
captures the quantum criticality of the system.
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